
1

Enhancing Evapotranspiration Estimates Under Climate1

Change: The Role of CO2 Physiological Feedback and CMIP62

Scenarios3

4
5

Xiaofan Yang 1, Yu Chen 2, Han Qiu 3, Virgílio A. Bento 4, Hongquan Song 5, Wei6
Shui 1, Jingyu Zeng 1, Qianfeng Wang 1*7

8
1College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350116,9
China10
2School of Public Administration and Policy, RENMIN UNIVERSITY OF CHINA,11
Beijing, 100872, China12
3Department of Sustainable Earth System Sciences, University of Texas at Dallas,13
Richardson, TX, USA14
4University of Lisbon, Faculty of Sciences, Instituto Dom Luiz, Lisbon, Portugal15
5College of Geography and Environmental Science, Henan University, 47500416
Kaifeng, China17

18
19

Corresponding author: Qianfeng Wang (wangqianfeng@fzu.edu.cn)20
21
22

Abstract23
The future state of global evapotranspiration (ET) estimation under climate change remains24
uncertain. Current formulations primarily developed based on the high emission CMIP5 scenario,25
have been widely used to represent conditions under elevated greenhouse gas pathways. However,26
these formulations may not adequately capture the enhanced vegetation–climate interactions27
projected under the lower-emission scenarios of CMIP6. Without updates to account for evolving28
plant physiological responses to rising CO2, projections may overlook critical feedbacks between29
atmospheric CO2 concentrations, vegetation behavior, and hydrological processes.30
To address this, developing CMIP6-specific formulations is essential to leverage its improved31
datasets and reduce uncertainties in future ET simulations. In this study, we update the32
Penman-Monteith evapotranspiration (PM-ET) model by incorporating the CO2-vegetation33
coupling effect. This is achieved using outputs from four Coupled Model Intercomparison Project34
Phase 6 (CMIP6) global climate models (GCMs) under four Shared Socioeconomic Pathways35
(SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5).36
Results indicate a sustained historical increase in potential evapotranspiration (Ep). Compared to37
earlier frameworks based on Coupled Model Intercomparison Project Phase (CMIP5) data, the38
inclusion of CO2 physiological effects reduces the deviation in projected ET trends by39
approximately 15–20%, accounting for the increase in stomatal resistance driven by CO240
concentrations rising from ~284 ppm to ~935 ppm. Furthermore, our model predicts an increasing41
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dependence of ET projections on emission scenario, highlighting the growing influence of42
pathway-specific feedbacks.43
Overall, our approach demonstrates greater compatibility with CMIP6 simulations, allowing for44
more accurate representation of ET responses to future CO2 increases. These findings provide45
valuable insights for advancing the analysis of nonlinear vegetation-atmosphere interactions and46
hydrological uncertainty under climate and physiological forcings.47
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Highlights54
CMIP6 integration enhances scenario-dependent ET trend sensitivity.55
Nonlinear vegetation-atmosphere interactions amplify hydrological uncertainty.56
Model updates improve Ep dynamics characterization under climate forcing.57
High-emission scenarios show greater Ep acceleration and uncertainty.58
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1 Introduction63

Vegetation-climate interactions under rising atmospheric CO2 concentrations drive complex64
biogeochemical feedbacks that shape the global carbon-water cycle across diverse biomes. As a65
result, the relationship between vegetation dynamics and climate change has gained increasing66
prominence in Earth system science. The bidirectional feedbacks are fundamental to understand67
changes in global hydrological and carbon cycles (Yang et al., 2019; Xu et al., 2024).68

69
On one hand, elevated CO2 levels trigger complex plant physiological responses, which influence70
the ecosystem hydrology (Sun et al., 2023; Li, 2024). For example, studies have shown that71
photosynthetic rates can increase by 12-25% for every 100 ppm rise in CO2, while stomatal72
conductance decreases by 20-40%. This reduction limits evaporative cooling, exacerbating73
extreme temperatures by 0.8-1.3 ℃ during drought periods (Zarakas et al., 2020; Li et al., 2024;74
Wu et al., 2024). Moreover, biome-specific responses create climatic asymmetries (Yang et al.,75
2023). Temperate forests exhibit adaptive resilience through phenological shifts, extending the76
growing season by 15.6 ± 3.2 days to mitigate respiratory carbon losses during heat extremes77
(Ainsworth and Rogers, 2007; Keenan and Williams, 2018). In contrast, tropical ecosystems78
experience accelerated biomass loss due to compound warming and precipitation anomalies (Betts79
et al., 2007; Gimeno-Sotelo et al., 2024a; Gimeno-Sotelo et al., 2024b). Soil carbon-climate80
interactions add further complexity, with elevated CO2 increased mineralization rates (Kong et al.,81
2023). Critical thresholds in plant hydraulic strategies also contribute to these differences (Medlyn82
et al., 2011; Wu et al., 2019).83

84
On the other hand, the strength of CO2-driven vegetation feedbacks is constrained by water85
availability. Since 2000, compound drought-heatwave events have reduced global terrestrial water86
storage by 12-18% and vegetation productivity by 9-15% (Piao et al., 2007; Jones et al., 2016;87
Zhou et al., 2016; Lu et al., 2025). These phenomena are attributed to sustained evapotranspiration88
pressure (Xu et al., 2024). Although CO2 fertilization initially enhances vegetation growth in89
water-limited regions, subsequent hydrological constraints often offset these benefits (Jasechko et90
al., 2013; Young et al., 2022). Therefore, accurately capturing the interplay between91
biome-specific responses and hydrological limitations is essential for understanding the cascading92
effects of climate and physiological drivers on the carbon–water cycle.93

94
Progress in evapotranspiration (ET) modelling is challenged by the need to account for95
CO2-climate coupling and regional hydrological variability. Widely used ET estimation methods,96
such as the Penman-Monteith Reference Crop (PM-RC) model, lack explicit consideration of CO297
effects (Stocker et al., 2018; Wu et al., 2021). As a result, traditional PM-RC models tend to98
overestimate future ET trends by 68-100% due to inadequate representation of CO2-induced99
stomatal closure (Yang et al., 2016). To address this, Yang et al. (2019) developed a modified100
framework incorporating CO2-dependent stomatal resistance, with improved ET projections under101
high CO2 scenarios (Luo et al., 2018a; Luo et al., 2018b). While high-resolution ET datasets have102
enhanced monitoring of extreme events (Pereira et al., 2015; Wu et al., 2021), alignment between103
climate model outputs and regional hydrological dynamics remains a critical challenge104
(Gimeno-Sotelo et al., 2024a). Consequently, the development of next-generation ET models that105
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explicitly couple CO2-climate feedbacks with regional hydrological dynamics is urgently needed.106
107

The Coupled Model Intercomparison Project Phase 6 (CMIP6) provides an improved framework108
for addressing these challenges. Its long-term, multi-scenario structure and inclusion of dynamic109
vegetation modules offer greater fidelity in representing vegetation–climate coupling(Eyring et al.,110
2016; O'neill et al., 2016). The Shared Socioeconomic Pathways (SSPs) embedded within CMIP6111
allow for systematic exploration of ET trajectories under divergent emission scenarios (Zeng et al.,112
2016; Jones et al., 2016; Wu et al., 2019). However, PM-RC-CO2 model proposed by Yang et al.113
(2019) still rely on formulas derived from CMIP5-era models, which may introduce114
inconsistencies when applied to CMIP6 scenarios. This can reduce confidence in115
cross-generational model comparisons and potentially exaggerate ET sensitivity to CO2 rise. To116
fully leverage CMIP6’s enhanced vegetation–climate framework, it is crucial to develop updated,117
scenario-specific formulations.118

119
In this study, we advance ET modelling by integrating the CMIP6 climate projection system with120
the PM-RC-CO2 model proposed by Yang et al. (2019). We use outputs from four global climate121
model (GCMs) from CMIP6, across four shared socio-economic pathways (from scenarioMIP,122
SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) for the period 2015-2100. Meanwhile, we used monthly123
outputs of precipitation, actual evapotranspiration, short and long wave radiation, and near-surface124
air temperature, air pressure, wind speed and specific humidity, to derive an updated PM-RC-CO2125
Ep formulation. This framework improves the representation of interactions between stomatal126
resistance and aerodynamic drivers based on the characteristics of CMIP6 data. To assess127
performance, we compare the updated model against earlier formulations, evaluating Ep trends,128
scenario dependencies, and model outputs. The proposed framework provides a more robust129
characterization of Ep dynamics under the CMIP6 multi-scenario structure, thereby improving the130
simulation of future hydrological changes.131

2 Data and methods132

2.1 Data and model performance evaluation133

To comprehensively assess the effects of CO2 concentration on ET changes, we used outputs from134
four selected CMIP6 GCMs: IPSL-CM6A-LR, GFDL-ESM4, CNRM-CM6-1, and135
MPI-ESM1-2-HR. These models were obtained from the CMIP6 data portal136
(https://esgf-node.llnl.gov/search/cmip6/) and include simulations for both the historical period137
and four future emission scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5.138

139
Each model provides essential variables required for ET estimation, including monthly land140
surface data (runoff, precipitation, evapotranspiration, shortwave and longwave radiation) and141
near-surface atmospheric parameters (temperature, pressure, wind speed, and specific humidity).142
To ensure consistency across datasets, all outputs were resampled to a uniform spatial resolution143
of 0.25° × 0.25°.144

145
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To evaluate the performance and reliability of the climate model simulations, we validated key146
variables against observational data from the W5E5 v2.0 dataset147
(https://data.isimip.org/search/simulation_round/ISIMIP3a/product/SecondaryInputData/climate_f148
orcing/w5e5v2.0/, 1979–2020), which covers the period 1979 – 2020. This comparison enabled149
the assessment of model skill in replicating observed climate and hydrological conditions, serving150
as a benchmark for subsequent ET modeling and scenario analyses.151

2.2 Determining �� over non-water-limited regions and152

months153

To quantify the sensitivity of stomatal resistance (rs) under rising CO2 concentrations, we applied154
a non-water limited screening method (Milly and Dunne, 2016; Yang et al., 2019). This method155
systematically integrates hydrological constraints and eliminates the influence of frozen water156
through temperature constraints, so as to effectively screen out the water limited areas and periods.157

158
The procedure is outlined as follows:159

1. The period of analysis (1861 – 2100) was divided into eight 30-year climatological160
periods.161

2. For each period, monthly ET and P outputs were fitted to a parabolic function. Grid cells162
with a maximum slope of the ET–P curve less than or equal to 0.05 were retained,163
indicating minimal hydrological limitation.164

3. We further filtered the data by selecting only those grid–month combinations where the165
ET/P ratio was less than 2.0, excluding regions under strong evaporative demand relative166
to precipitation.167

4. The intersection of non-water-limited domains across all eight 30-year periods was168
retained to ensure consistent spatiotemporal coverage.169

5. To eliminate the influence of frozen water, we exclude grid cells and months with average170
temperatures below 10 °C.171

This filtering process isolates vegetated regions and time periods with minimal hydrological172
constraints, thereby enabling a more accurate assessment of stomatal resistance responses to173
elevated CO2 concentrations.174

175

2.3 Adjustment of the PM-RC-CO2 model176

2.3.1. The Penman–Monteith model177
The Penman-Monteith (PM) equation provides a robust framework for estimating reference178
evapotranspiration (ET₀), synthesizing surface energy balance and aerodynamic transfer principles179
(Monteith, 1977; Monteith and Unsworth, 2013; Milly and Dunne, 2016). The models calculate180
evapotranspiration(E) as:181

182
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�� =
���

∗ + ����� ��

� + � 1 + �� ��

where s represents the slope of the saturation vapor pressure-temperature relationship (Pa·K⁻¹), γ183
denotes the psychrometric constant (Pa·K⁻¹), and �� corresponds to air density (kg·m⁻³). The184
specific heat at constant pressure (�� , J·kg⁻¹·K⁻¹) quantifies energy storage capacity. The vapor185
pressure deficit (D, Pa), drives evaporative demand, modulated by the temperature-dependent186
latent heat of vaporization ( � , J·kg⁻¹). Aerodynamic resistance ( �� , s·m⁻¹) is derived from187
logarithmic wind profile theory.188

189
2.3.2. PM-RC Ep model190
The standardized PM-RC model adopts fixed biophysical parameters representing typical C3 crop191
physiology under non-drought conditions, including surface stomatal resistance (rs = 70 s·m⁻¹),192
canopy height (0.12 m), and shortwave albedo (α = 0.23), among others (Allen et al., 1998). ET₀193
(mm·day⁻¹) is computed as:194

�� =
0.408���

∗ + � 900
� + 273 ��

� + � 1 + 0.34�

195
2.3.3. PM-RC Ep model modified to account for atmospheric [CO2](PM-RC-CO2)196
Yang et al. (2019) introduced a CO2 responsive modification to the PM model by parameterizing197
stomatal resistance. This modification is based on empirically derived significant regression198
coefficients from controlled experiments, enabling quantification of vegetation-atmosphere199
feedbacks under high CO2 conditions. This approach not only retains the biophysical basis of the200
original framework but also relates with the relationship between CO2 concentration and stomatal201
dynamics. The equation is:202

203
204

�� =
0.408���

∗ + � 900
� + 273 ��

� + � 1 + � 0.34 + 2.4 × 10−4 ��2 − 300

Here, the term 2.4×10−4([CO2]−300) reflects the empirical modulation of stomatal resistance by205
CO2 concentration, where 300 ppm represents the preindustrial baseline (1860–1960). This206
coefficient was obtained from nonlinear regression analysis of plant physiological responses in207
controlled environments, and encapsulates vegetation feedbacks aligned with CMIP6208
scenario-driven CO2 sensitivities.209

210
2.3.4. Updated PM-RC-CO2 model211
The original PM-RC-CO2 formulation was based on CMIP5-driven parameterization. Applying it212
directly to CMIP6 scenarios may introduce uncertainty due to differences in CO2–climate213
feedback representation. Therefore, we recalibrated the stomatal resistance–CO2 relationship using214
the CMIP6 multi-model ensemble, integrating vegetation physiological response and CO2-forcing215
within a physically consistent parameter space. The updated formulation is:216

217
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�� =
0.408���

∗ + � 900
� + 273 ��

� + � 1 + � 0.34 + 1.9 × 10−4 ��2 − 300

218
This version introduces a revised CMIP6-constrained empirical coefficient 1.9×10⁻⁴([CO2]-300),219
offering improved representation of CO2-induced stomatal resistance (rs) effects and enhanced220
model performance under CMIP6 climate scenarios.221

2.4 Statistical Methods222

To study changes in potential evapotranspiration (Ep) trends, we use the Bayesian Estimator of223
Abrupt Change, Seasonality, and Trend (BEAST) method (Zhao et al., 2019), which decomposes224
time-series into trend, seasonality, and residuals components and effectively handles nonlinear225
shifts (Li et al., 2022).226
M-K trend test is a non parametric statistical test method (Mann, 1945). It can clearly detect the227
rise, fall or no trend in the time series data, and can more accurately capture the long-term trend228
without being disturbed by short-term fluctuations. It has been widely used in the field of climate229
change (Hamed, 2008; Machiwal et al., 2022). This study uses this method to analyze the global230
EP results calculated by the original formula and the updated formula from 1850 to 2100.231
We used Wilcoxon rank test to compare and analyze the results of different GCMS in different232
models at different periods. Wilcoxon signed rank test is a nonparametric statistical test used to233
compare the differences between two dependent variable samples (Cuzick, 1985). Like other234
nonparametric tests, this test does not assume a specific distribution of the analyzed data. The235
parameter test equivalent to Wilcoxon signed rank test is the dependent variable sample t test (or236
paired t test). If p<0.05, there is a significant difference between the two groups.237

238
239

3 Results240

3.1 Model performance evaluation and CO2 Driven Surface241

Resistance Sensitivity242

To assess the availability and reliability of climate model data, we compared four key climate243
variables (relative humidity, downward longwave radiation, downward shortwave radiation,244
and temperature) from the four global GCMs with observational data (Kling et al., 2012;245
Dahri et al., 2021; Zhang et al., 2024). Results indicate a strong agreement between model246
outputs and observations. For relative humidity (hurs), all models show high correlation247
coefficients (>0.85) and standard deviations within 10% of observed values, indicating248
accurate humidity simulation (Fig.1a). For the downward longwave radiation (rlds), model249
variability fits well with observations, with correlation coefficients above 0.75 and standard250
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deviations mostly within 15% (Fig.1b). The downward shortwave radiation (rsds) shows251
slightly larger discrepancies, but still acceptable model performance (Fig.1c), with correlation252
coefficients above 0.65 and standard deviations within 20%. The simulation of temperature253
(tas) is particularly robust, with correlation coefficients exceeding 0.9 and standard deviations254
within 5% (Fig.1d). These results confirm that the selected GCMs are capable of accurately255
reproducing historical climatic conditions at the global scale.256

257
Figure 1. Taylor diagrams of simulated climate variables compared to observations across258
the globe for the period 1979–2019. Panels show performance of four GCMs in simulating: (a)259
relative humidity (hurs), (b) downward longwave radiation (rlds), (c) downward shortwave260
radiation (rsds), and (d) near-surface air temperature (tas). The dashed green lines represent root261
mean square deviation (RMSD).262

263
Using these validated models under multiple SSP scenarios, we evaluated the sensitivity of surface264
resistance (Δrs) to changes in atmospheric CO2 concentration (Δ[CO2]). A robust linear265
dependence was found between the two variables (Figure 2), consistent across models. The inter266
model variability of the slope coefficient within ± 15% of the mean, demonstrating robustness. In267
historical simulations (1850-2014), the baseline CO2 concentration is ~284 ppm, with surface268
resistance around ~52 s·m−1. Under the high emission SSP5-8.5 scenario (2071-2100), rs rises to269
~78 s·m−1, while CO2 increases to ~935 ppm. This implies a ~50% increase in rs for a ~229%270
increase in CO2, revealing a stronger ET model sensitivity compared to earlier CMIP5-based271
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projections.272
273

Additionally, the relative sensitivity parameter Sr[CO2] remains spatially and temporally stable,274
ranging from 0.08 to 0.11% ppm−1 (Figure 3). This confirms that CMIP6 models retain the CO2 rs275
coupling dynamics previously observed in CMIP5, but with increased sensitivity to CO2.276

277
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278

279
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280

Figure 2. Ensemble mean relationship between changes in stomatal resistance (rs) and281
atmospheric CO2 concentration ([CO2]) across four ESMs, relative to the 1851–1950 baseline,282
under different SSP scenarios. Panels (a–d) show IPSL-CM6A-LR results for SSP1-2.6,283
SSP2-4.5, SSP3-7.0, and SSP5-8.5; (e–h) GFDL-ESM4 results for the same scenarios; (i–l)284
CNRM-CM6-1 projections under equivalent SSPs; and (m–p) MPI-ESM1-2-HR simulations285
following the SSP scenario hierarchy. All analyses use a consistent baseline climatology286
(1851–1950) and apply the same radiative scaling conventions.287
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288
Figure 3. Sensitivity of climate models to atmospheric CO2 concentrations under different289
SSP scenarios. The horizontal axis shows the sensitivity metric Srs-[co2] (%·ppm⁻¹), while the290
vertical axis lists the climate models. Colored bars represent different SSP scenarios. The dashed291
red line indicates the multi-model mean value of 0.1086.292

293

3.2 Annual Changes in Ep from the Updated PM-RC-CO2294

Model295

296

Figure 4. Normalized annual mean Ep values across historical and future SSP scenarios. The297
black line represents the historical mean (1860–2014), while colored lines correspond to SSP1-2.6,298
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SSP2-4.5, SSP3-7.0, and SSP5-8.5. The shaded gray area denotes ±1 standard deviation.299
300

The updated PM-RC-CO2 model, calibrated using CMIP6 data, shows a persistent upward trend in301
potential evapotranspiration (Ep) during historical simulations (1860–2014). By more accurately302
capturing nonlinear vegetation–climate interactions, the updated formulation improves the303
representation of CO2-induced physiological feedbacks. This improvement is particularly evident304
under high-emission scenarios. From 2015 to 2100, Ep intensification rates vary by scenario:305
under SSP5-8.5, the decadal increase is approximately 2.1%, while under SSP1-2.6, it is 1.2%.306
Under SSP5-8.5, standardized Ep uncertainty (±1σ) rises from ±0.05 (2020–2040) to ±0.12307
(2081–2100), indicating growing climate variability with increased CO2 concentrations.308

309

310
Figure 5. Time series decomposition of climate variables from 1850 to 2100 under different311
SSP scenarios: (a) SSP1-2.6, (b) SSP2-4.5, (c) SSP3-7.0, (d) SSP5-8.5. Each panel illustrates312
long-term trends, seasonal patterns, and residual variations within the scenario.313

314
315

In order to further explore the characteristics of scenario related trend changes, we decompose the316
standardized annual EP trend from 1850 to 2100. The low-emission SSP1-2.6 scenario shows317
gradual Ep increase of 58.3 ± 14 mm/year. The high-emission scenario (SSP5-8.5) exhibits a318
steeper Ep increase of 167.9 ± 36 mm/year. Seasonal decomposition shows ongoing cyclical319
patterns, but under SSP5-8.5, the amplitude of seasonal signals weakens after 2050, reflecting320
rising climate instability. Despite uncertainties, BEAST’s probabilistic framework confirms robust321
stratification under SSPs, with SSP5-8.5 trends exceeding SSP1-2.6 by 187% by 2100.322
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3.3 Global Trends in Ep Calculated from Original and323

Updated PM-RC-CO2 Models324

325
Figure 6. Global Ep trend patterns derived from the Mann-Kendall (MK) method using326
the original ET-RC-CO2 model under (a) SSP1-2.6, (b) SSP2-4.5, (c) SSP3-7.0, and (d)327
SSP5-8.5. Associated histograms display the frequency distribution of Ep trend magnitudes328
across spatial domains.329

330
The original ET-RC-CO2 model Ep trend under different scenarios is shown in Figure 6. Under the331
SSP1-2.6 scenario, the Ep trends show a relatively modest increase. This indicates that in this332
scenario, the changes in Ep are relatively stable although significant. However, when it comes to333
the SSP5-8.5 scenario, there are more pronounced increases in Ep, especially in tropical and334
mid-latitude regions. These areas experience a more substantial upward trend in Ep compared to335
other regions. The histograms in Figure 6 further demonstrate that as scenarios become more336
extreme, there are higher frequencies of strong positive trends in Ep. This suggests that under the337
influence of different socioeconomic and climate scenarios, Ep exhibits diverse trends, with more338
extreme scenarios leading to more intense and frequent positive Ep trends.339

340
Compared with the original model, the updated model using CMIP6 data (Figure 7) has a similar341
spatial pattern, but there are significant differences in the trend amplitude. In SSP2-4.5 and342
SSP3-7.0, the trend magnitudes are consistently larger, indicating a more pronounced increase in343
Ep. This suggests that the updated model has an enhanced sensitivity to climatic shifts, as it344
captures more significant changes in Ep under these scenarios. The histograms also reflect this,345
showing a shift towards higher frequencies of strong positive trends in the more extreme346
scenarios.347

348

https://doi.org/10.5194/egusphere-2025-2560
Preprint. Discussion started: 16 July 2025
c© Author(s) 2025. CC BY 4.0 License.



17

Figure 8 compares the original and updated models. The spatial distribution of trend differences349
shows that the updated model predicts higher Ep trends by 2-3 mm/year in many regions under350
SSP3-7.0 and SSP5-8.5. This indicates an enhanced sensitivity of the updated model to climatic351
shifts, particularly in these more extreme scenarios. The differences are more pronounced in352
certain areas, suggesting that the updated model may better capture the regional variations in Ep353
trends.354

355

356
Figure 7. Same as Figure 6, but for the updated ET-RC-CO2 model.357

358

359
Figure 8. Differences in global Ep trends between the updated and original ET-RC-CO2360
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models using CMIP6 data for (a) SSP1-2.6, (b) SSP2-4.5, (c) SSP3-7.0, and (d) SSP5-8.5.361
Associated histograms display the frequency distribution of Ep trend differences across spatial362
domains.363

364

3.4 Comparison Between Scenarios and Time Periods365

We quantified Ep differences between original and updated models across scenarios (Figure366
9). Results show that the original model consistently underestimates Ep. Under SSP1-2.6, the367
updated formula's average Ep is 1.4% higher than the original in the base period and 2.9%368
higher in the late period. In SSP2-4.5, the difference widens from 1.3% in the base period to369
3.7% in the late period. For SSP3-7.0, the late period difference reaches 5.0%. In the370
high-emission SSP5-8.5, the late period difference is the largest at 6.3%.371

372
Moreover, we conducted a comparative analysis of the distributional results produced by the373
original and updated formulations across multiple models and time periods. Projections based374
on the original formulation (Figure 10) indicate a marked increase in Ep severity from the375
historical baseline (1850 – 2014) to the late 21st century (2071 – 2100), with the biggest376
increases occurring after 2050. This upward trend persists under the updated formulation (Fig.377
11), but the revised method exacerbates the projected Ep severity by an additional 12-18%,378
particularly during the mid-century (2051 – 2070) and end-of-century under high-emission379
scenarios.380

381
The comparative analysis (Figs 10, 11) underscores the substantial sensitivity of Ep382
projections to the choice of model parameterization. Statistically significant differences (p <383
0.05) between the two methods were identified in 78% of the late-century simulations.384
Notably, the divergence between original and updated formulations becomes increasingly385
pronounced with rising CO2 concentrations, particularly under high-forcing scenarios.386

387
In the late 21st century under SSP3-7.0, the updated formulation systematically yields higher388
Ep means compared to the original: 5.1% increase (599.9 vs. 578.7 mm/year) for389
IPSL-CM6A-LR, and 4.0% (569.4 vs. 547.5 mm/year) for GFDL-ESM4. Under SSP5-8.5,390
MPI-ESM1-2-HR exhibits a 6.8% increase (919.8 vs. 861.4 mm/year) by the end of a century,391
with its late-period Ep difference being 3.2 times larger than in the base period. Similarly, in392
CNRM-CM6-1, the Ep difference at the end of the century under SSP5-8.5 (758.2 vs. 715.4393
mm/year) doubles that of SSP1-2.6 (773.8 vs. 751.9 mm/year) in the same period.394

395
Overall, the updated formulation consistently produces higher Ep projections across all396
emission scenarios, with differences becoming more pronounced over time and with397
increasing emission intensity.398

399
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400
Figure 9. Total annual Ep severity using both the original and updated ET-RC-CO2401
formulas across different SSP scenarios and time periods: base (1850–2014), early402
(2015–2050), middle (2051–2070), and late (2071–2100). Panels: (a) SSP1-2.6, (b) SSP2-4.5,403
(c) SSP3-7.0, (d) SSP5-8.5. Significance levels: *** for p ≤ 0.001, ** for p ≤ 0.01, and * for p404
≤ 0.05.405

406

407
Figure 10. Total annual Ep severity using the original ET-RC-CO2 formula across SSP408
scenarios and time periods: base (1850–2014), early (2015–2050), middle (2051–2070), and409
late (2071–2100). Panels: (a)SSP1-2.6, (b)SSP2-4.5, (c)SSP3-7.0, (d)SSP5-8.5. Significance410
levels: *** for p≤0.001, ** for p ≤0.01, and * for p≤0.05. The upper green sign indicates p-values411
between two GCMs; the lower sign indicates p-value between all GCM pairs, except the lower412
green one.413

414
415
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416
Figure 11. Same as Figure 10 but for the updated ET-RC-CO2 formula.417

418

4 Discussion419

The observed increase in EP severity is consistent across multiple analytical methods, supporting420
earlier findings by Mondal et al. (2024), Weij et al. (2024), and Yang et al. (2023). Nevertheless,421
our results reveal that numerical estimates remain highly sensitive to model structure and422
parameterization schemes. Notably, evapotranspiration projections display heightened sensitivity423
during the latter half of the 21st century, especially under high-emission scenarios. This424
emphasizes the added value of incorporating CMIP6 data, which improves model responsiveness425
to evolving climatic drivers (Ma et al., 2018; Liu et al., 2022; Bai et al., 2025). These findings426
underscore the need for comprehensive, well-calibrated models in future climate risk assessments.427
A key insight from this study is the significant role of CO₂-induced plant physiological responses428
in modulating evapotranspiration. To improve the robustness and predictive capability of future429
hydrological models, better integration of dynamic vegetation processes is essential.430

4.1 Uncertainties Across Emission Scenarios431

Substantial uncertainty persists in the current understanding and modelling of the ET process432
(Pan et al., 2020). As shown in Figure 9, low-emission scenarios (such as SSP1-2.6) exhibit a433
more dispersed distribution across models than high-emission scenarios, leading to slightly434
elevated average Ep values under low-emission conditions.435

436
To explore these uncertainties, we performed comparative analysis using ET models driven by437
the same forcing data. Distributions from both the original and updated formulations were438
evaluated across models and time periods (Figures 10 and 11), helping to pinpoint sources of439
model uncertainty and guiding future improvements in ET estimates (Warszawski et al., 2014;440
Miralles et al., 2016).441

442
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Our results indicate that low- and medium-emission scenarios show greater inter-model443
variability. Moreover, the original model consistently underestimates long-term climate444
responses under medium- to high-emission scenarios. This underestimation may be attributed445
to a parameterization process that heavily relied on historical high-emission conditions,446
limiting it’s ability to capture future feedback mechanisms under intensifying radiative447
forcings (Knowling et al., 2019; Cui et al., 2021).448

449
Although the updated formulation demonstrates improved sensitivity to CO2 variations, there450
is still room for improvement – particularly under low-emission scenarios. These trends are451
shaped by varying driving factors, model architectures, and differences in parameterization452
approaches across existing ET datasets (Badgley et al., 2015; Michel et al., 2016). Future453
work should focus on reducing systemic bias in projections under low-emission scenarios.454

455

4.2 Impacts, Limitations, and Prospects456

This study relied on unadjusted CMIP6 outputs, which may introduce systematic errors when457
applied to the improved ET formulation. Future work could benefit from using bias-corrected458
CMIP6 datasets and accounting for systematic discrepancies in atmospheric forcing variables.459
Previous studies have shown that calibrated CMIP6 products can significantly enhance the460
representation of precipitation seasonality and CO2 trajectories (Raziei and Pereira, 2013a, b).461
Such improvements are especially critical in semi-arid regions, where more refined modeling can462
incorporate nonlinear feedbacks between stomatal conductance and atmospheric CO2, as well as463
biochemical parameterization for C3/C4 species (Ding et al., 2013; Potkay et al., 2025; Wu et al.,464
2025).465

466
The current model assumes fixed vegetation responses to CO₂, which is appropriate for large-scale467
analyses but less suitable for regional applications (Bao et al., 2021; Cui et al., 2023). For468
finer-scale assessments, model accuracy can be enhanced by integrating detailed representations469
of vegetation physiological responses (Luo et al., 2018a; Luo et al., 2018b). For example, dynamic470
stomatal conductivity models that respond to rapid CO2 and light fluctuations can increase471
transpiration estimates by 22–30% under extreme conditions (Lawson and Vialet-Chabrand, 2019;472
Poyatos et al., 2016; Poyatos et al., 2021). The use of canopy conductance algorithms that account473
for photosynthetic pathway differences is also critical for accurately simulating ET in474
C4-dominated dryland ecosystems (Croft et al., 2017; Wei et al., 2019).475

476
Advanced parameterization, such as linking foliar nitrogen and phosphorus content to477
photosynthetic efficiency, enables more ecosystem-specific transpiration estimates (Cernusak et al.,478
2010). When combined with vegetation indices like Normalized Differences Vegetation Index479
(NDVI) (Suarez et al., 2008; Sayago et al., 2017; Ballester et al., 2018), these refinements can480
reduce simulation error by up to 0.38 mm/day compared to FAO-56 methods (Allen et al., 2007;481
Pereira et al., 2021).482

483
Integrating structural vegetation indices such as Leaf Area Index (LAI) and canopy height gradient,484
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further improves the soil vegetation water coupling. Recent advances, such as the use of485
GEDI-derived canopy height products, have shown strong potential in separating soil evaporation486
from canopy transpiration via aerodynamic resistance calibration – particularly valuable in arid487
regions (Bao et al., 2022; Chen et al., 2022; Wu et al., 2024). Additionally, using the functional488
trait diversity threshold for grid selection has reduced uncertainty in carbon water coupling489
prediction in forest ecosystems by 12-15% (Li et al., 2013; Xu et al., 2015; Zhang et al., 2018;490
Joswig et al., 2022; Wang et al., 2022).491

492
These developments align with the improved Budyko framework, which integrates493
vegetation-mediated runoff elasticity and helps mitigate scale-dependent biases in regional ET494
partitioning (Roderick et al., 2014; Zeng et al., 2016; Mianabadi et al., 2019; Yang and Roderick,495
2019; Scheff et al., 2022). Finally, improved spatial screening through moisture-limited grid496
selection criteria has been shown to reduce spatial heterogeneity in ET projections (Talsma et al.,497
2018; Lian et al., 2018; Lian et al., 2021).498

499

5 Conclusion500

This study integrates CMIP6 multi-scenario projections and CO2-vegetation coupling effects into501
the Penman-Monteith evapotranspiration (PM-ET) model, enhancing the representation of502
climate-vegetation interactions for improved hydrological projections. Methodological advances503
include the dynamic parameterization of stomatal resistance and scenario-dependent sensitivity504
analysis. The main findings are as follows:505

506
(1) The updated PM-ET model reduces CO2-induced evapotranspiration (ET) bias by 15-20%507
compared to earlier approaches, showing improved consistency with CMIP6 data.508
(2) Evapotranspiration potential (Ep) exhibits a consistent upward trend – particularly under509
high-emission scenarios such as SSP5-8.5, where increases reach up to 635.1 mm/yr – driven by510
CO2-climate synergies.511
(3) Model parameterization plays a critical role in capturing CO2-physiological feedbacks;512
however, regional uncertainties persist due to heterogeneous vegetation responses and513
methodological sensitivity.514

515
These findings highlight the need to further refine hydrological models by incorporating516
CMIP6-specific mechanisms, such as dynamic vegetation modules and biome-specific feedbacks.517
By improving the accuracy of scenario-based projections, this work contributes to more robust518
assessment of water resource risks under climate change and provides valuable insights for519
adaptation planning in both ecological and agricultural systems.520

521
522
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